Q -0 Department of Mathematics ©			INDIAN SCHOOL AL WADI AL KABIR Class \mathbf{X} Department: Mathematics Worksheet - Triangles (MCQ \& Assertion Reasoning) $06-\mathbf{0 8} \mathbf{- 2 0 2 3}$							
Questions of 1 mark each										
Q.1.	$\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are similar triangles such that $\angle \mathrm{A}=32^{\circ}$ and $\angle \mathrm{R}=65^{\circ}$, then $\angle \mathrm{B}$ is									
	A		83°	B	32°	C	65°	D	97°	
Q.2.		fig,	EF \|	AC, BC	0 cm	$\mathrm{B}=13 \mathrm{~cm} \text { and } \mathrm{EC}$	2 cm	then AF is		
	A		2.6 cm	B	26 cm	C	10 cm	D	260 cm	
Q.3.	In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are points on side AB and AC respectively such that $\mathrm{DE} \\| \mathrm{BC}$. If $\mathrm{AE}=2 \mathrm{~cm}$, $\mathrm{AD}=3 \mathrm{~cm}$ and $\mathrm{BD}=4.5 \mathrm{~cm}$, then CE is									
	A		4 cm	B	3 cm	C	30 cm	D	6 cm	
Q.4.	In two triangles $A B C$ and $P Q R$, if $\frac{A B}{Q R}=\frac{B C}{R P}=\frac{C A}{P Q}$, then									
	A		$\mathrm{R} \sim \Delta \mathrm{CAB}$	B	$\Delta \mathrm{PQR} \sim \Delta \mathrm{ABC}$	C	$\Delta \mathrm{PQR} \sim \Delta \mathrm{CBA}$	D	$\triangle \mathrm{PQR} \sim \triangle \mathrm{BCA}$	
Q.5.	In triangles PQR and $\mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle Q=25^{\circ}, \angle \mathrm{M}=100^{\circ}$ and $\angle \mathrm{S}=25^{\circ}$, then									
	A		$\mathrm{R} \sim \Delta \mathrm{STM}$	B	$\Delta \mathrm{PQR} \sim \Delta \mathrm{STM}$	C	$\Delta \mathrm{QPR} \sim \Delta \mathrm{MST}$	D	$\Delta \mathrm{PQR} \sim \Delta \mathrm{MTS}$	
Q.6.	If $\frac{A B}{E D}=\frac{B C}{D F}$, then triangles $A B C$ and DEF are similar if									
	A		$\angle \mathrm{B}=\angle \mathrm{E}$	B	$\angle \mathrm{A}=\angle \mathrm{D}$	C	$\angle \mathrm{B}=\angle \mathrm{D}$	D	$\angle \mathrm{A}=\angle \mathrm{F}$	

Q.7.		O is the point of i ODB are	se	of two chords $A B$	nd	D such that $\mathrm{OB}=\mathrm{O}$	$\overline{\mathrm{D}, \mathrm{t}}$	en triangles OAC	
	A	equilateral but not similar	B	isosceles but not similar	C	equilateral and similar	D	isosceles and similar	
Q.8.	In $\triangle A B C, D$ and E are points on $A C$ and $B C$ respectively such that $D E \\| A B$. If $A D=2 x$, $\mathrm{BE}=2 \mathrm{x}-1, \mathrm{CD}=\mathrm{x}+1$ and $\mathrm{CE}=\mathrm{x}-1$, then the value of x is								
	A	1	B	$\frac{1}{3}$	C	3	D	$-\frac{1}{3}$	
Q.9.	If $\triangle \mathrm{ABC} \sim \Delta \mathrm{EDF}$, then which one of the following is not true?								
	A	$\mathrm{BC} . \mathrm{EF}=\mathrm{AC} . \mathrm{DF}$	B	$\mathrm{AB} . \mathrm{EF}=\mathrm{AC} . \mathrm{ED}$	C	$\mathrm{BC} . \mathrm{ED}=\mathrm{AB} . \mathrm{DF}$	D	$\mathrm{BC} \cdot \mathrm{ED}=\mathrm{AB} . \mathrm{DF}$	
Q.10.	In $\triangle A B C, D$ and E are points on $A B$ and $A C$ respectively and $D E \\| B C$. If $A B=7.6 \mathrm{~cm}, A D=1.9 \mathrm{~cm}$, then AE : EC is:								
	A	1:4	B	4:1	C	1:3	D	3:1	
Q.11.	If $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ is such that $2 \mathrm{AB}=\mathrm{DE}$ and $\mathrm{BC}=8 \mathrm{~cm}$, then EF is:								
	A	4 cm	B	16 cm	C	8 cm	D	112 cm	
Q.12.	In the figure, $P Q$ is parallel to $M N$. If $\frac{K P}{P M}=\frac{4}{13}$ and $K N=34 \mathrm{~cm}$, then find $K Q$.								
	A	2 cm	B	17 cm	C	4 cm	D	8 cm	

